top of page

Eugene Bioinformatics Lab
Advancing Biological Research with Data

Foundational Courses (Beginner Level)

Courses for beginners with little or no prior knowledge in bioinformatics:

  • Introduction to Bioinformatics: Overview of bioinformatics, genomics, proteomics, and computational biology.

  • Basic Programming for Bioinformatics: Introduction to Linux, Shell, Python, R, or MATLAB for biological data analysis, with key topics on loops, functions, and libraries (e.g., Biopython, Tidyverse).

  • Biostatistics for Beginners: Fundamental statistical concepts, including hypothesis testing, regression analysis, and data visualization.

  • Introduction to Databases in Bioinformatics: Understanding and querying biological databases (NCBI, UniProt, Ensembl, RCSB) using SQL and web interfaces.

  • Basic Molecular Bioinformatics: PCR primer design, Sanger sequence analysis, and NCBI BLAST.

openart-image_DQJGwUUF_1736042809463_raw.jpg

Structure Based Drug Discovery

  • Introduction to Structure-Based Drug Discovery (SBDD)

  • Molecular Modeling and Docking Techniques

  • Protein-Ligand Interactions and Binding Site Analysis

  • Computational Tools for SBDD (AutoDock, PyMOL, Chimera)

  • Virtual Screening: Ligand-Based vs Structure-Based

  • Pharmacophore Modeling and Drug-Likeness Evaluation

  • ADMET Prediction in Drug Discovery

  • Case Studies: Successful SBDD Applications

  • AI and Machine Learning in Drug Discovery

  • Hands-on: Docking and Virtual Screening

  • Current Trends and Future Directions in SBDD

openart-image_4DdD53de_1736043550711_raw.jpg

Microbial Bioinformatics

Module 1: Introduction to Bioinformatics

  • What is Bioinformatics?

  • History and Scope of Bioinformatics

  • Biological Databases (NCBI, EMBL-EBI, UniProt)

  • Sequence Formats (FASTA, GenBank)

  • Basic Sequence Analysis Tools (BLAST, FASTA)

Module 2: Genome Assembly and Annotation

  • Overview of Genome Sequencing Technologies (Sanger, NGS)

  • Genome Assembly Algorithms (de novo, reference-guided)

  • Assembly of long read, short read and hybrid.

  • Annotation of Prokaryotic Genomes

  • Gene Prediction and Functional Annotation

  • Using Annotation Tools (Prokka, RAST)

Module 3: Data Visualization

  • Circular Genome Maps (CGView)

  • Comparative Genome Visualization (BRIG)

  • Visualization of Gene Expression Data

  • Interactive Data Exploration Tools

Module 4: Antimicrobial Resistance Genes

  • Mechanisms of Antimicrobial Resistance

  • Detection and Characterization of Resistance Genes

  • Analysis of Resistance Gene Spread and Evolution

  • Bioinformatics Tools for Resistance Gene Prediction (ResFinder, CARD)

Module 5: Plasmid Annotation and Analysis

  • Plasmid Biology and Classification

  • Plasmid Annotation and Visualization

  • Analysis of Plasmid Replicons and Transfer Mechanisms

  • Identification of Mobile Genetic Elements on Plasmids

Module 6: Mobile Genetic Elements

  • Types of Mobile Genetic Elements (Transposons, Integrons, Bacteriophages)

  • Mechanisms of Horizontal Gene Transfer

  • Impact of Mobile Genetic Elements on Microbial Evolution

  • Bioinformatics Tools for MGE Analysis (ISfinder, MGfinder)

Module 7: Pangenome Analysis

  • Core Genome, Pan-genome, and Accessory Genome

  • Pangenome Analysis Methods

  • Applications of Pangenome Analysis in Microbiology

  • Interpreting Pangenome Results

Module 8: SNP-based Analysis

  • Single Nucleotide Polymorphisms (SNPs)

  • SNP Detection and Analysis

  • Population Genetics and Phylogeography

  • Applications of SNP Analysis in Microbiology

Module 9: Phylogenetic Tree Construction

  • Principles of Phylogeny

  • Phylogenetic Tree Construction Methods (Maximum Likelihood, Neighbor-Joining)

  • Tree Visualization and Interpretation

  • Phylogenetic Analysis of Microbial Genomes

Bioinformatics in Microbiology.jpg

Genome Variant Interpretation/Genome Data Analysis

·  Module 1: Introduction to Genomics and Genetics

  • Fundamentals of genetics: DNA structure, inheritance patterns.

  • Types of genetic variation: SNPs, indels, CNVs, structural variants.

  • Population databases.

  • In-silico tools for pathogenicity prediction.

  • OMIM database

  • NCBI and Ensemble genome browser

·  Module 2: Genome Data Analysis

  • Next-generation sequencing technologies.

  • Genome alignment and variant calling.

  • Variant annotation and filtering: utilizing databases (e.g., dbSNP, ClinVar, gnomAD).

  • ACMG/AMP guidelines for variant classification.

  • Evaluating evidence from different sources (e.g., population data, functional studies, case reports).

  • Writing variant classifications and supporting reports.

  • Case studies in variant interpretation.

  • Mitochondrial variant interpretation

·  Module 3: Data Visualization and Hands on Practice

  • Creating effective visualizations of genomic data (Integrative genome viewer).

  • Hands on practice to analyse few cases on third party available tools (raw files will be provided by us)

Eugene_Bioinformatics_please_design_a_course_on_genome_variant_interpret_a72af560-05e2-403

Cytogenetics, Karyotyping, and Microarray Data Analysis

  • Understand the fundamental principles of cytogenetics and its role in human health and disease.

  • Learn about the structure, function, and organization of chromosomes.

  • Master the techniques of chromosome preparation and banding for karyotype analysis.

  • Develop the ability to interpret karyotypes and identify chromosomal abnormalities.

  • Understand the principles of microarray technology and its applications in cytogenetics.

  • Learn to analyze microarray data and identify copy number variations and other chromosomal abnormalities.

  • Gain practical experience in using bioinformatics tools for analyzing cytogenetic data.

  • Understand the clinical significance of chromosomal abnormalities and their impact on human health.

chromosomes.jpg

DNA Fragment Analysis, Sanger Sequencing Data Analysis, and Primer Designing

Module 1: Primer Design

  • Principles of Primer Design

  • Factors Affecting Primer Specificity and Efficiency (Melting Temperature, GC content, Secondary Structure)

  • Designing Primers for PCR, qPCR, and Sequencing

  • Using Primer Design Software (Primer3, OligoAnalyzer)

  • Evaluating and Optimizing Primer Design

Module 2: Sanger Sequencing

  • Principles of Sanger Sequencing (Chain Termination Method)

  • Reading and Interpreting Sequencing Chromatograms

  • Identifying Sequencing Errors (Base Calling Errors, Homopolymer Errors)

  • Analysis of Sequence Variations (SNPs, Indels)

Module 3: Bioinformatics Tools for Sequence Analysis

  • Introduction to Bioinformatics and its applications in molecular biology

  • Sequence Analysis Software (BLAST, ClustalW)

  • Data Visualization and Interpretation

  • Using Online Resources for Sequence Analysis (NCBI, UCSC Genome Browser)

Module 4: DNA Fragment Analysis

  • DNA Fragment analysis for chromosomal aneuploidy detection

  • Detection of Maternal Cell Contamination in Prenatal Samples

DNA (DARK BACKGROUND).jpg
  • Facebook
  • Twitter
  • LinkedIn
bottom of page